

12

Perimeter = Add all 4 sides 12+12+6+6= 36

Area = Multiply 2 touching sides 12×6=72 Find the area of a regular hexagon with side length 7.4 cm.

Area.
$$\Delta = \frac{1}{2} \times 7.4 \times 6.41$$

= 23.717 ×6

A 8 cm 165° B

NOT TO SCALE

The diagram shows a sector of a circle with centre O, radius 8 cm and sector angle 165°.

(a) Calculate the total perimeter of the sector.

9

39.04 cm [3]

(b) The surface area of a sphere is the same as the area of the sector.

Calculate the radius of the sphere.

[The surface area, A, of a sphere with radius r is $A = 4\pi r^2$.]

$$4\pi^{2} = \frac{165}{360} \times \pi^{2}$$

$$r^{2} = \frac{88}{3}\pi \div 4\pi$$

$$= \frac{22}{3}$$

$$r = 2.71$$

2.31 cm [4]

The Maths Society

(c)

NOT TO **SCALE**

A cone is made from the sector by joining OA to OB.

Calculate the radius, r, of the cone.

$$2 \pi = 23.04$$

3.67 cm [2]

(ii) Calculate the volume of the cone. [The volume, V, of a cone with radius r and height h is $V = \frac{1}{3}\pi r^2 h$.]

$$h = \sqrt{64 - 3.67^2}$$

$$V = \frac{1}{3} \pi r^{2}h$$

$$= \frac{1}{3} \times 3.14 \times 3.67^{2} \times 7.11 = 100.2 \text{ cm}^{3}$$

100.2

(b) A cylinder with radius 6 cm and height h cm has the same volume as a sphere with radius 4.5 cm.

Find the value of h.

[The volume, V, of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]

$$\pi^{2}h = \frac{4}{3}\pi^{3}$$

$$36h = \frac{4}{3} \times (4.5)^{3}$$

$$h = 3.375$$

$$h = 3.375 \text{ cm}$$
 [3]

(c) A solid metal cube of side 20 cm is melted down and made into 40 solid spheres, each of radius rcm.

Find the value of r.

[The volume, V, of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]

The volume,
$$V$$
, of a sphere with radius r is $V = \frac{1}{3}\pi r^3$.]

40 sphere = V of cube = $\frac{8000}{40}$ = $\frac{3}{400}$ =

(d) A solid cylinder has radius x cm and height $\frac{7x}{2}$ cm.

The surface area of a sphere with radius R cm is equal to the total surface area of the cylinder.

Find an expression for R in terms of x.

[The surface area, A, of a sphere with radius r is $A = 4\pi r^2$.]

$$4\pi R^{2} = 2\pi x^{2} + 2\pi x \times \frac{1}{2}$$

$$4R^{2} = 2x^{2} + 7x^{2}$$

$$R = \frac{9x^{2}}{4}$$

$$R = \frac{3}{2}x$$

$$R = \frac{3}{2}x$$

$$R = \frac{3\pi}{2} \text{ cm}$$
 [3]

The Maths Society

(b)

Water flows at a speed of 20 cm/s along a rectangular channel into a lake. The width of the channel is 15 cm.

The depth of the water is 2.5 cm.

Calculate the amount of water that flows from the channel into the lake in 1 hour. Give your answer in litres.

V for
$$1 \sec = 20 \times 15 \times 2.5$$

= 750 cm^3
1 hour = 750×3600
= 2700000 cm^3
= 1700 l

2400 litres [4]

- 4 A solid metal cone has radius 1.65 cm and slant height 4.70 cm.
 - (a) Calculate the total surface area of the cone. [The curved surface area, A, of a cone with radius r and slant height l is $A = \pi r l$.]

$$Tr^2 + Trl$$

= $Tr \times (1.65^2 + 1.65 \times 4.70)$
= 32.9

32.9 cm² [2]

(b) Find the angle the slant height makes with the base of the cone.

$$\cos \theta = \frac{1.65}{4.7}$$
 $\theta = 69.4$

69.4 [2]

(c) (i) Calculate the volume of the cone. [The volume, V, of a cone with radius r and height h is $V = \frac{1}{3}\pi r^2 h$.]

$$h = \sqrt{4.7^2 - 1.65^2} \qquad V = \frac{11x^2h}{3} = \frac{11x \cdot 1.65^2 \times 4.4}{3}$$

$$= 4.4$$

$$= 12.5$$

..... cm³ [4]

(ii) A metal sphere with radius 5 cm is melted down to make cones identical to this one.

Calculate the number of complete identical cones that are made.

[The volume, V, of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]

V sphere =
$$\frac{4}{3} \text{Tr}^3 = \frac{4}{3} \times \text{Tx} 5^3$$

= 523.6

no of cones = 41 cones

NOT TO SCALE

OAB is the sector of a circle, centre O. OB = 8 cm and angle $AOB = 30^{\circ}$. BP is perpendicular to OA.

(a) Calculate AP.

COS
$$30 = \frac{0P}{8}$$
 $OP = 6.93$
 $AP = 8 - 6.93$
 $= 1.07$
 $AP = 1.07$

cm [3]

(b) Work out the area of the shaded region APB.

A of
$$\triangle = \frac{30}{360} \times \text{TTr}^2$$

= $\frac{1}{12} \times \text{TI} \times 8^2$
= 16.76 cm²

A of
$$\Delta = \frac{1}{2} \times a \times b \times sinc$$

$$= \frac{1}{2} \times 6.93 \times 8 \times sinso$$

$$= 13.86$$

shaded = 2.9